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Abstract

Scale bridging simulations of soft matter rely on the availability of transferable

coarse-grained models. In systematic coarse-graining approaches, core principles of

statistical mechanics are used to relate the coarse-grained models to the underlying

molecular interactions. The conditional reversible work (CRW) method provides effec-

tive, nonbonded pair potentials by means of computing coupling free energies between

mapped chemical groups. This method has so far been used almost exclusively for

systems composed of apolar organic molecules, but additional challenges arise when

developing coarse-grained models for polar molecules in which (long-ranged) electro-

static interactions are important. Herein, we present a modified formulation of the

CRW method where we divide the effective interaction potential into van-der-Waals
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and electrostatic components. The shape of the effective electrostatic interaction justi-

fies modeling the electrostatics using a Coulomb potential with point charges on each

site that are equal to the net charge of the underlying group of atoms. We perform CRW

calculations using two polar molecules as test cases (an ether (1,2-dimethoxyethane) and

an ester (ethylpropionate)). The results of subsequent liquid state simulations indicate

that the coarse-grained models obtained by the new method are of similar quality with

respect to representability and thermodynamic transferability as formerly developed

models for apolar systems.

Introduction

Soft matter research often requires the study of systems and processes on time and length

scales that are too large to be modeled by atomistic models. The use of coarse-grained (CG)

models enables us to overcome some of these limitations by reducing the number of degrees

of freedom in the system and thereby softening the potential energy surface which leads to

inherently faster dynamics.1 A variety of methods have been published in the literature that

follow the systematic coarse-graining approach.2–11 In systematic coarse-graining methods,

interactions between sites in the coarse-grained model are based on an underlying fine-

grained model in a bottom-up manner. The resulting coarse-grained models have been used

for the study of a variety of soft matter systems.12–16 These methods can be subdivided into

two classes: structure based (IBI,6 IMC7) and force-matching (MS-CG,5 EF-CG,4 CRW3)

methods. In structure based coarse-graining, one tries to parametrize the model in such a way

that the liquid structure and additional properties are reproduced by the CG model. Force-

based methods on the other hand generate a CG potential based directly on the interactions

in the fine-grained model. The conditional reversible work (CRW) method developed by

Brini et al. is of the latter kind,3 and it is unique because it can be applied by sampling

only two molecules in a vacuum environment, thereby providing a CG model at minimal

computational cost.
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Other CG models have been parametrized in a rather top-down approach with the aim of

reproducing e.g. vapor-liquid coexistence curves,17 polymer glass transition properties18 or

bulk partition free energies.19 The use of CG models is in many cases restricted to state points

close to the state point at which they were parametrized. Transferability, i.e. the capability

of a model of correctly representing state points beyond the immediate vicinity of the state

point of its parametrization, is a desired feature of CG models and several approaches have

been published to achieve transferability. These include the use of temperature-dependent

potentials,17,18,20–22 multistate sampling techniques23,24 and other approaches.8,25,26

We have shown in the past that the CRW coarse-graining method provides CG models

that are transferable in a rather broad range of temperatures and that these models represent

liquid phase structural and thermophysical properties as well as liquid-vapor and liquid-solid

interfacial properties in good agreement with experiments and fine-grained simulations.3,14,27

The CRW method has been used to develop CG models for alkanes, polymers and graphene

surfaces.3,12,14,27–29 It has so far not been applied for polar or ionic systems, and in its

original formulation it is not well suited for the application to such systems. Herein we

present a modified formulation of the CRW method that allows for a separate treatment of

electrostatic and Van-der-Waals (vdW) interactions in the CG model. This modified CRW

method is subsequently tested on two model systems (an ether and an ester). We would like

to point out that it is not the focus of this work to provide CG models whose properties

match experimental data. Rather, we would like to show in a "proof-of-principle" manner

that the method described herein allows to obtain transferable CG models from underlying

fine-grained reference representations of polar molecules.

Methods

The aim of the systematic coarse-graining procedure is the development of a coarse-grained

(CG) model that is based on a fine-grained (FG) reference model (usually an all-atom or
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united-atom model). The CG model consists of interaction sites that are related to the sites

of the FG model by a mapping scheme. In this work, the center of mass mapping is used

(see Computational Details).

The main challenge of the coarse-graining process is the determination of suitable non-

bonded interaction potentials. In CRW models, interactions between pairs of CG sites

are modeled with a free-energy-based pair potential, which corresponds to the reversible

work of coupling the microscopic interactions between the atoms contained within the CG

interaction sites, given a constant distance between CG sites. This free energy difference

can be calculated by the use of a thermodynamic cycle (see fig. 1) from the reversible work

(RW) associated with the process of moving the two interaction sites from infinity to a finite

distance r with direct interactions turned on and off respectively:

Geff (r) = Won(r)−Woff (r) (1)

A feature that distinguishes the CRW method from other coarse-graining methods is the

fact that the CG potentials can be obtained from atomistic sampling of two molecules in

vacuo. Other surroundings can in principle also be chosen,14 but the sampling in vacuo

provides a computationally efficient way to calculate the CRW-CG interaction potentials.

All CRW potentials used in this work were obtained using vacuum sampling. For a more

detailed description of the CRW method we refer the reader to the existing literature.3

When modeling apolar molecules, the resulting CG potentials will resemble a Lennard-

Jones potential with its characteristic features: a steep increase of energy towards zero dis-

tance, a potential well, and an attractive tail converging to zero at short distances. The last

feature of the potentials is critical for the success of the method as using the aforementioned

thermodynamic cycle necessitates that Geff ≈ 0 at the largest sampled inter-site distance.

For models of polar molecules the interaction potential may contain significant contributions

of electrostatic interactions, especially if the mapping scheme is chosen such that interaction
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sites exhibit net charge 6=0. These electrostatic contributions are typically long-ranged and

thus may not have converged to zero at the distance chosen as interaction cutoff. The result-

ing CRW potential is shifted by an unknown amount, and it is unclear whether it can serve

as a physically meaningful interaction potential. Extending the sampling by including more

and more distances will, of course, eventually lead to convergence but the larger cutoff length

required in the CG simulation will decrease the overall performance. This can be overcome

by including a switch function that will force the interactions to zero at a shorter distance

value. The choice of this shorter interaction cutoff of this switch function, however, is an

additional parametrization choice and may consequently require tuning of the non-bonded

interaction potentials.

In this work, we propose a different approach to tackle this challenge: we separate the

interaction potential into an effective Van-der-Waals (vdW) and an effective electrostatic

(ES) part. This natural decomposition is also used in atomistic force fields and in the

effective-force coarse-graining method.4 With the available algorithms for the treatment of

long-range electrostatics, such as particle mesh Ewald and reaction field algorithms, a short

cutoff can also be used for the ES part of the interaction potential.

The decomposition of Geff is performed as described in the following. We assert here that

non-bonded atomistic interactions in the fine-grained force field underlying our CG model

are modeled using a Van-der-Waals and an electrostatic term. We will refer to these terms as

the "interaction components" of the fine-grained model. The process of "switching on" these

components will be performed in two steps, as opposed to the single step procedure employed

in the original CRW method. In the first step, one of the FG interaction components is

turned on leading to an intermediate state. The free energy difference associated with this

process will be denoted as AΨ. Next, the second interaction component is introduced. The

free energy difference associated with this change of the FG interactions is denoted BΦ. In

our notation Ψ and Φ serve as placeholders for the interaction components that are being

introduced into the model (i.e. ES and vdW). The CG interaction energy is the sum of the
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two parts:

Geff = AΨ +BΦ (2)

The order of introduction can be chosen arbitrarily and the resulting Geff will be indepen-

dent of this choice. However, one should be aware of the fact that this is not true for its

components A and B:

AΨ 6= BΨ (3)

because the second introduction is performed under the condition that the first interaction

component is already present in the system.
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Figure 1: Thermodynamic cycles used for the calculation of A(r) and B(r). The two central
atoms of a hexamer are merged into one site in the CG model (2:1 mapping). In the lowest
part, all interactions between the two central atoms are absent; in the middle part, only the
electrostatic component of the interactions is present; and in the upper part, all interactions
are included. A(r) and B(r) are then calculated from the potentials of mean force W (r)
under the assumption that all W (rc) = 0.

The calculation of the free energy differences is almost identical to the original single-step

procedure. In addition to Won and Woff , we calculate a RW function for the intermediate

state in which interaction component Ψ is present in the system (Won,Ψ).
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The reversible work is calculated by integrating over the projection of the inter-molecular

force Fmol on the unit vector e parallel to the distance vector connecting the mass centers

of the CG sites of interest in constrained molecular dynamics (MD) simulations:

W (r) = −
∫ r

∞
〈Fmol · e〉(r′) dr′ (4)

To ensure that the distance between the CG interaction sites of interest remains constant

throughout the simulation the positions of these sites (α) are constrained to their initial

value by modifying the force on all atoms (i) contained within the site in the following way:

Fi,α = F’i,α −
mi

mα

Nα∑
j=0

F’j,α (5)

where F’i,α is the (unconstrained) force on atom i, mi and mα are the masses of atom i and

site α respectively, and Nα is the number of atoms contained in site α. The equation of

motion of atoms that are not part of the sites of interest remains unchanged.

These constrained dynamics runs are performed using four different types of interactions

between the atoms within the sites of interest and the forces on the molecules are integrated

to yield the corresponding reversible work:

1. All interactions present (yielding Won(r))

2. No interactions present (yielding Woff (r))

3. Only electrostatics present (yielding Won,ES(r))

4. Only Van-der-Waals interactions present (yielding Won,vdW (r))

From these the CRW interaction potentials are calculated:

AΨ = Won,Ψ −Woff (6)

BΨ = Won −Won,Ψ (7)
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For the sake of clarity, we re-emphasize that only those interactions between atoms that are

part of the CG sites of interest are modified; all other FG interactions remain unchanged.

This approach provides either {AES, BvdW} or {AvdW , BES} that can in principle both

serve as interaction potentials in our CG simulations. It would be highly advantageous if the

electrostatic component can be approximated with a Coulomb potential. Then, established

long-range methods for the electrostatics can be used, avoiding a large cutoff radius in the

CG simulation. We shall show below that this is indeed possible if we choose AES as a

representation of the electrostatic interactions.

Computational details

The two-step CRW method is applied to two molecules, 1,2-dimethoxyethane (DXE) and

ethylpropionate (EPP), mapped on a CG representation with three sites as test cases.
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Figure 2: Mapping schemes used for the CG models. Partial charges on the united atoms
used in the FG simulation are shown to illustrate that there are non-zero net charges on sites
D1, D2, E1, and E2.

Figure 2 shows the mapping schemes employed for these molecules. The GROMOS

53A6OXY force field developed by Horta et al. is used as a fine-grained reference model in

the CRW calculations.30

Calculation of non-bonded CG interaction potentials

In order to obtain the interaction potentials for the CG model, calculations are performed

using the modified two-step CRW method described above.
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Constrained MD runs are performed for all pairs of CG interaction sites using two

molecules in vacuo. These simulations were performed using LAMMPS.31 A time step of 1

fs is used and the total simulation time is 2 ns for each MD run. The temperature is kept at

a value of 300 K using the Langevin thermostat32 with a time constant of 0.5 ps. Distances

from 0.3 nm up to a cutoff length of 1.3 nm are sampled with a 0.02 nm distance increment.

The electrostatic interactions are modeled by a Coulomb potential and are screened with the

experimental relative permittivity as reported in reference 30 (DXE: 7.3, EPP: 5.6) and an

infinite cutoff length without long-range corrections. This leads to a closer approximation

of the behavior within a liquid phase than the use of unscreened electrostatic interactions

would.

It will be demonstrated below that AES resembles a Coulomb potential. Therefore, rather

than AES itself, an unscreened Coulomb potential (with εr = 1) is instead applied in the CG

simulations using the net charges of the interaction sites determined by the mapping (fig. 2).

Long-range electrostatics are modeled using the particle-mesh Ewald (PME) algorithm.33

The vdW component in the CG model is modeled by BvdW . In our simulations we do

not use a tabulated version of BvdW but instead a Morse potential, described below, fitted

to the data. This choice facilitates applications of the reported CG model in which the

functional form is used directly, or can be compiled in potential energy tables. A modified

Morse potential with 4 parameters has been used to fit BvdW :

U(r) = ε((1− e−ki(r−r0))2 − 1)


i = 1 r ≤ r0

i = 2 r > r0

(8)

For very small distances this functional form differs increasingly from the calculated

values of BvdW . We therefore limit our fit to distance values for which BvdW < 10 kJ mol-1

to obtain a better approximation of the potential energy well and the attractive tail. The

error introduced by this procedure is negligible because in an unconstrained simulation the

values with considerable deviation from the fitted function are rarely sampled, and the
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potential will certainly keep its repulsive character when using the functional form. In fig.

3, we motivate the choice of this functional form by comparing to a Lennard-Jones function.

The Morse potential yields a very good approximation of both the excluded volume and the

attractive potential well. The Lennard-Jones functional form does not yield the same degree

of accuracy for both of the potentials shown in fig. 3. While the attractive region of the

potential energy curve can be modeled with the Lennard-Jones functional form, the resulting

core repulsion is too steep when compared to the calculated interaction energy. This result

is in agreement with findings published by others.29,34
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Figure 3: Different analytical approximations to BvdW are shown. The modified Morse
potential (black) provides the best approximation of the calculated potential. A Lennard-
Jones potential obtained by the same fitting procedure (blue curve) does not match the
attractive well of the potential. A Lennard-Jones potential that approximates the Morse
potential (using σLJ = r0/2

1
6 and εLJ = ε; red curve) reproduces the attractive region but

does not match the excluded volume as well as the Morse-type fit.

Bonded CG interaction potentials

For DXE the intramolecular interaction potentials are calculated from Boltzmann-inversion

of probability distributions gathered from a simulation run of length 100 ns of one molecule

in vacuum with all nonbonded interactions excluded. The Langevin thermostat is used

with a reference temperature of 300 K and a time constant of 0.5 ps. From the mapped
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configurations gathered from these simulations we can calculate the potentials for the D1-

D1 bond length b and the D1-D2-D1 angle θ:

UB(b) = −kBT log
ρ(b)

b2
+ CB (9)

UA(θ) = −kBT log
ρ(θ)

sin(θ)
+ CA (10)

where ρ denotes the probability density of the respective intra-molecular degree of freedom

and C is a constant chosen such that min(U) = 0. The resulting potentials are shown in

figure 4.
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Figure 4: Intramolecular potentials used for the DXE model. Left panel: UB. Right panel:
UA.

For EPP the same approach was attempted but as a result of the very rigid geometry

of the molecule, the intramolecular potentials obtained from this calculation were too rigid

to allow for a stable MD simulation at a timestep of 1 fs. We therefore constrain the bond

lengths and angles of EPP to their average value using the LINCS-algorithm.35 The average

bond distances are 0.268 nm and 0.239 nm for the E1-E2 and E2-E3 bonds respectively. The

average E1-E2-E3 angle is 124°.

Liquid Phase simulations

Using the FG and CG models, simulations of liquid systems are performed in a cubic sim-

ulation box with periodic boundary conditions containing 400 molecules. All liquid phase
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simulations were performed with a timestep of 1 fs using the GROMACS package version

4.6.7.36 The simulation boxes are equilibrated for 5 ns using weak-coupling algorithms for

temperature and pressure.37 After equilibration, production runs of 5 ns are performed using

the Nosé-Hoover thermostat38,39 (time constant 0.2 ps) and Parrinello-Rahman barostat40,41

(time constant 2.5 ps; reference pressure 1 bar; compressibility 4.5·10-5 bar-1). The temper-

ature is varied from 260 K to 340 K in increments of 20 K. In order to calculate the surface

tension NVT simulations are carried out with a half empty box starting from an equilibrated

NPT configuration. The same overall settings are used as for the NPT simulations.

In the FG simulations, we use the twin-range cutoff scheme of the GROMOS force field42

using a short-range cutoff of 0.8 nm and a long-range cutoff of 1.4 nm. Neighbor lists are

updated every 5 steps. A short range cutoff of 1.4 nm is used for the electrostatic interactions.

Long-range electrostatic interactions are modeled using the PME algorithm implemented in

GROMACS with a grid spacing of 0.12 nm and a relative tolerance of 10−5.33 No long-

range corrections are applied for the Lennard-Jones dispersion contribution to the energy

and pressure.

In the CG simulations, a simple cutoff of 1.3 nm is used. The Van-der-Waals interaction

is simulated using a potential table generated from equation 8 with a spacing of 1 pm and

linear interpolation. The short-range cutoff length for the electrostatic interactions is 1.3 nm

in the CG model. The long-range part of the ES interactions is treated in the same way as

in the FG simulations.

Results and Discussion

Non-bonded interaction potentials

In figure 5, we show a detailed overview of the components of the CRW interaction free

energy for the pair D1-D2. This example illustrates the fact that the order of introducing

the interaction components is important and why we have chosen the set {AES, BvdW} as the
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Figure 5: A detailed illustration of the interaction energies obtained using both possible
introduction orders for the pair of CG sites D1 and D2. AES can be approximated by a
Coulomb potential and BvdW is fitted using a Morse-type potential.

final CG force field. Here BvdW is fitted using eq. 8 and we can observe a good reproduction

of the data by the functional form. The electrostatic component AES is compared to the

Coulomb potential for point charges qα and qβ shifted to zero at the cutoff distance:

UC(r) =
qαqβ

4πε0εr

(
1

r
− 1

rc

)
(11)

The values of qα and qβ are set equal to the net charge on the sites here and in all following

plots and are defined as:

qα =
Nα∑
j=0

qj,α (12)

where qj,α is the partial charge on atom j in CG site α and Nα is the number of atoms

contained in CG site α.

Only a good match of the calculated CRW potential to this functional form justifies the

approximation to model AES with a simple Coulomb potential. The smaller the inter-site

distance, the more deviation from this behavior can be expected. Indeed, fig. 5 shows that

an increasing difference between the theoretical form and the CRW potential is observed.

However, the overall agreement of the Coulomb potential and the CRW data suggests that
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the point-charge approximation of the CG sites can be justified. The energy components

of the set {AvdW , BES} do not have these characteristic physical shapes. The electrostatic

component is repulsive and the convergence of the attractive tail of the Van-der-Waals part

does not converge to zero on short distances. In this case, the interpretation of the interaction

components is not as straightforward and we could not justify the use of point charges from

the physical form of the interaction potential.
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Figure 6: CG interaction potentials of the like pairs of DXE. The black circles represent
the calculated BvdW potential, while the black curve shows the fitted BvdW potential. Red
circles represent the calculated AES and the red curves show the theoretical prediction for a
potential of point charges.
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Table 1: Non-bonded parameters of the CG force field

ε / kJ mol-1 r0 / nm k1 / nm-1 k2 / nm-1 q / e

DXE
D1-D1 1.182 0.471 9.739 13.583 -0.29
D2-D2 0.942 0.510 10.731 10.433 0.58
D1-D2 1.136 0.486 10.065 10.659

EPP
E1-E1 1.529 0.481 11.136 9.537 0.29
E2-E2 1.678 0.413 11.934 10.538 -0.29
E3-E3 1.315 0.495 10.550 10.841 0
E1-E2 1.887 0.458 10.828 7.348
E2-E3 1.451 0.469 10.592 11.014
E1-E3 1.362 0.489 10.867 10.920

Figures 6 and 7 show the CG interaction potentials for the remaining pairs of DXE and

EPP. Here we show the fitted Van-der-Waals component and the calculated CRW potential

for the electrostatic component (symbols) as well as for the theoretical Coulomb interaction

potential based on point charges (lines). Table 1 gives an overview of all the non-bonded

parameters used in the CG force field.

Physical properties of the coarse-grained model systems

In this section, we present results from liquid phase simulations using the CRW-CG models

described above and compare them to quantities obtained from simulations using the FG

reference force field.

The properties investigated include the isobaric heat capacity cp and the isothermal com-

pressibility κ, which can be calculated from enthalpy and volume fluctuations, respectively,

in the constant pressure-temperature ensemble:

cp =
〈H2〉 − 〈H〉2

kBT 2NDOF

(13)

κ =
〈V 2〉 − 〈V 〉2

kBT 〈V 〉
(14)
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where V denotes the total volume, T the temperature and kB the Boltzmann constant. The

total enthalpy H = Ekin +Epot + pV is calculated using the pressure p and the total kinetic

(Ekin) and potential (Epot) energies of the system. The number of thermal degrees of freedom

NDOF = 3Nat − 3, where Nat denotes the total number of atoms in the simulation.

In addition, we calculate the relative dielectric permittivity εr of the liquid using:43

εr = 1 +
〈M2〉 − 〈M〉2

3ε0V kBT
, (15)

where M is the total dipole moment of the system and ε0 is the permittivity of the vacuum.

Another quantity relating to the electrostatic properties of the liquid is the finite system

Kirkwood factor Gk which relates to the strength of correlation between molecular dipole

moments and can be calculated as follows:44

Gk =
〈M2〉 − 〈M〉2

Nmol〈µ2〉
(16)

using the number of molecules Nmol and the molecular dipole moment µ.

From NVT simulations with a half empty box (extended to length Lz in z-direction) we

calculate the surface tension from the pressure tensor components pii:

γ =
Lz
2

(
pzz −

pxx + pyy
2

)
(17)

Table 2: Properties at 300K

DXE EPP
Property FG CG FG CG
ρ / kg m-3 871 919 855 930
γ / mN m-1 29.9 ± 0.4 26.2 ± 1.1 22.2 ± 0.4 26.8 ± 1.7
κ / 10-9 Pa-1 0.97 ± 0.01 1.17 ± 0.02 1.18 ± 0.01 1.03 ± 0.04
cp / J mol-1 K-1 29.7 ± 0.1 16.7 ± 0.3 29.2 ± 0.1 11.5 ± 0.7
εr 10.44 30 4.12 10.7
Gk 1.15 2.8 1.05 1.25
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Figure 8: Radial distribution functions of the centers of mass of CG sites from simulations
using the FG (black) and CG (red) models. a) D1-D1; b) D2-D2; c) D1-D2; d) RDF of
molecular COM.

The RDF of all interaction pairs are shown in figure 8. While the RDF of the D1-

D1 pair is almost quantitatively reproduced, the CG model yields only a rough qualitative

reproduction for the remaining two pairs. Especially for the D2-D2 pair we can observe a loss

of resolution and an increase in long-range correlations which is probably due to an increase

in the effective excluded volume of the central methylene group. The CG model reproduces

the excluded volume of the D1-D2 pair well but also fails to resolve details of the RDF of

this pair qualitatively and quantitatively. The same can also be observed in the RDF of the

molar centers of mass.

The values of the thermodynamic observables computed for the FG and CG models are

shown in table 2 for a temperature of 300 K and in figure 9 for a range of temperatures.

The mass density of the liquid is overestimated by 5% at 300 K and the thermal expansion

coefficient of the FG model is well reproduced by the CG model in the temperature range

between 260 K and 340 K.

The heat capacity per degree of freedom predicted by the CG model is lower than the

value calculated from FG reference simulations. This result is not surprising because the
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Figure 9: Calculated physical properties of liquid systems of DXE modeled with the FG
(black) and CG (red) models as a function of temperature.

coarse-graining procedure softens the potential energy landscape of the system and therefore

will reduce its capability to store thermal energy in its translational and internal degrees of

freedom.

The isothermal compressibility is overestimated at all temperatures but the temperature

dependence is reproduced by the CG model. We attribute this overestimation to an increase

in volume fluctuations which are of higher magnitude in the CG model due to a softened

potential energy surface. We would like to point out that a more accurate representation

of the volume fluctuations of the system is in principle possible by the use of the barostat

formulation for CG systems published recently by Dunn and Noid.45 The use of this ther-

mostat, however, requires additional parametrization that would go beyond the scope of this

work.

The liquid-vapor surface tension for DXE is underestimated by ∼ 10% and the tempera-

ture dependence is well reproduced in the given temperature range. These results document

the excellent state point transferability of the CRW-CG models as reproduction of surface

properties requires a very good description of both liquid and vapor behavior.

The value of εr is overestimated in the CG model although the molecular dipole moment

distribution (shown in fig. 10, left panel) of the FG model is well reproduced by the CG

model. A comparison of the Kirkwood factors shows that Gk is increased in the CG model
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in comparison to the FG reference by approximately the same ratio as εr. This indicates

that dipole-dipole correlations are too strong which may correlate with the overestimation

of D2-D2 density correlations shown in fig. 8b.
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The g(r) of all interaction pairs are shown in figure 11. The performance of the EPP

CG model in reproducing the liquid structure is better than that of the DXE model. We

observe a match of the RDF for all pairs and although a perfect quantitative reproduction
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is not achieved (and should not be expected anyway) the CG model is able to reproduce all

essential features of the reference liquid structure qualitatively.
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Figure 12: Calculated physical properties of liquid systems of EPP modeled with the FG
(black) and CG (red) models as a function of temperature.

The mass density is slightly higher compared to the FG reference (overestimation of ∼

9% at 300K) and the thermal expansion coefficient is less well matched by the CG model

which predicts a lower expansion coefficient than the reference FG simulation.

The heat capacity is lower in the CG model, a finding that has already been discussed

above for DXE.

The isothermal compressibility is underestimated for all temperatures and the temper-

ature dependence is also different for the compared models. This finding is not intuitive

because it might be expected that the softened potential energy surface in the CG model

leads to increased volume fluctuations like it was observed for DXE. However we suspect the

reason for the underestimation of κ is to be found in the higher density in the CG model

which renders the liquid less compressible. The density is overestimated more strongly for

EPP than for DXE and therefore density effects might trump the effect of the softer in-

teractions. This hypothesis is supported by the fact that the mismatch in κ is larger at

temperatures that show a larger mismatch in the liquid density.

The liquid-vapor surface tension prediction by the two investigated models differ by ∼

15% and the temperature dependence is well reproduced.
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The relative permittivity εr is overestimated in the CG simulations by a factor of 2.5

although the Kirkwood factor Gk is reproduced better than in the case of DXE. However we

observe that the molecular dipole moment is overestimated in the CG model (fig. 10). This

suggests that the reason for the mismatch in the relative permittivity is not so much due

to increased orientational correlations between dipoles but rather due to the increase of the

molecular dipole moment itself.

Conclusion

We have presented a modification to the CRW bottom-up coarse-graining method that al-

lows for a separation of electrostatic and Van-der-Waals components in the CG model by

stepwise introduction of the respective fine-grained interaction components. This procedure

has been applied using two polar organic molecules as test cases. The effective pair poten-

tials obtained can be decomposed into effective electrostatic and effective vdW interactions

only when choosing the appropriate order of introducing the fine-grained interaction com-

ponents. In simulations of the CG system, the new approach ascertains that the vdW part

of the interaction free energy has converged at the cutoff. Furthermore, methods for long-

range electrostatics can be used for a proper treatment of the electrostatic interactions of

the model. The CRW-CG interaction potentials are derived from two fine-grained molecules

in vacuo and are not parametrized to fit any structural or thermodynamic target quantity.

Still, coarse-grained simulations reproduce liquid-state properties in satisfactory agreement

with the fine-grained model. In particular, the bulk density and predict the thermal expan-

sion coefficient are reproduced quite accurately. This shows that CRW models with explicit

electrostatics show a high degree of transferability, as has been observed for CRW models

of apolar molecules.3,12,14 Furthermore, both CG models presented in this work predict the

vapor-liquid surface tension in good agreement with reference simulations, an observation

that can serve as further evidence for the state point transferability of CRW-CG potentials.
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Unfortunately, the CRW models do not reproduce the relative dielectric permittivity of the

FG systems. This quantity depends on a number of factors and it is unclear whether modi-

fying one of these factors independently will result an a better reproduction of the dielectric

properties. However, if a correct reproduction of this quantity is desired one could attempt

to tune the charges on the CG sites in order to change the molecular dipole moment in

systems where the orientational correlations between dipole moments are well reproduced

(like EPP). However, we advice to perform such tuning carefully because whenever such a

modification of the model is performed, the interaction free energy Geff will no longer be

independent of the introduction order and it is likely that the model will lose a great deal of

its predictive power and transferability when such a posteriori modifications are applied.

We conclude that the modified CRW method presented in this work is a good extension

to the toolbox of systematic bottom-up coarse-graining of polar molecular systems. The

method can be especially useful for polymers or systems with a large number of different

interaction sites. For these systems vacuum sampling is particularly advantageous as liquid

state simulations will be computationally expensive and structure-based CG methods may

be difficult to converge. Further studies remain to be performed to test the method on more

polar molecules (e.g. alcohols, amines, ionic liquids) in order to determine, whether CG

models can be obtained by our modified method also for these systems.

We finally point out that the effective-force coarse-graining method introduced by Wang

and coworkers uses an approach that is methodologically very similar to the CRW method.4

In their study, the authors also show that the CG interactions can be decomposed into effec-

tive Van-der-Waals and electrostatic contributions. As parametrization of EF-CG methods

can be efficiently performed in the liquid phase differences can be expected with respect to

the CRW potentials originating from vacuum sampling. Another methodological difference,

however, lies within the fact that effective potentials derived with the CRW method contain

indirect contributions originating from the modified sampling in a simulation with excluded

interactions. In EF-CG, the sampling is only performed with all interactions present in the
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system and therefore these contributions are absent. As a result of this subtle methodologi-

cal difference we can expect slightly different potentials even if the fine-grained sampling is

performed in an identical environment. The resulting CG potentials from the EF-CG and

CRW methods will however show a similar shape, and it would be interesting to see to which

degree the resulting models are comparable in terms of transferability and representability.
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